
Combining
Test Case Generation and Runtime Verification

Cyrille Artho a � 1, Howard Barringer b � 2, Allen Goldberg c,
Klaus Havelund c, Sarfraz Khurshid d � 3, Mike Lowry e,
Corina Pasareanu c, Grigore Roşu f, Koushik Sen f � 4,

Willem Visser g, Rich Washington g

aComputer Systems Institute, ETH Zurich, Switzerland
bDepartment of Computer Science, University of Manchester, England

cKestrel Technology, NASA Ames Research Center, USA
dMIT Computer Science and Artificial Intelligence Laboratory, USA

eNASA Ames Research Center, USA
fDepartment of Computer Science, Univ. of Illinois at Urbana-Champaign, USA

gRIACS, NASA Ames Research Center, USA

Abstract

Software testing is typically an ad-hoc process where human testers manually write test
inputs and descriptions of expected test results, perhaps automating their execution in a
regression suite. This process is cumbersome and costly. This paper reports results on a
framework to further automate this process. The framework consists of combining auto-
mated test case generation based on systematically exploring the input domain of the pro-
gram with runtime verification, where execution traces are monitored and verified against
properties expressed in temporal logic. Capabilities also exist for analyzing traces for con-
currency errors, such as deadlocks and data races. The input domain of the program is ex-
plored using a model checker extended with symbolic execution. Properties are formulated
in an expressive temporal logic. A methodology is advocated that automatically generates
properties specific to each input rather than formulating properties uniformly true for all
inputs. The paper describes an application of the technology to a NASA rover controller.

Key words:
Automated testing, test case generation, model checking, symbolic execution, runtime
verification, temporal logic, concurrency analysis, NASA rover controller.

Preprint submitted to Theoretical Computer Science 12th April 2004

1 Introduction

A program is typically tested by manually creating a test suite, which in turn is a set
of test cases. An individual test case is a description of a single test input to the pro-
gram, together with a description of the properties that the corresponding output is
expected to have. This manual procedure may be unavoidable since for real systems
writing test cases is an inherently innovative process requiring human insight into
the logic of the application being tested. However, we believe that a non-trivial part
of the testing work can be automated. Evidence is found in a previous case study,
where an 8,000-line Java application was tested by different student groups using
different testing techniques [14]. It was observed that the vast majority of faults
that were found in this system could have been found in a fully automatic way. We
suggest a framework for generating and executing test cases in an automated way
as illustrated by Figure 1. For a particular application to be tested, one establishes
a test harness consisting of two modules: a test case generator and an observer.

Application trace Observerinput
generator
Test case

Model
input/output

Properties

Figure 1. Test case generation and runtime verification.

The test case generator takes as input a model of the input domain of the applica-
tion to be tested. The model furthermore describes a mapping from input values to
properties: for each input element, the model defines what properties an execution
on that input should satisfy. The test case generator automatically generates inputs
to the application. For each generated input a set of properties is generated. The
input is applied to the program, which executes, generating an execution trace. The
observer module checks the trace against the generated set of properties. Hence, it

1 Cyrille Artho is grateful to QSS for the partial support provided to conduct this research.
2 Howard Barringer is grateful to RIACS/USRA and the UK’s EPSRC under grant
GR/S40435/01 for the partial support provided to conduct this research.
3 Sarfraz Khurshid is grateful to RIACS/USRA for the partial support provided to conduct
this research.
4 Koushik Sen is grateful to RIACS/USRA for the partial support provided to conduct this
research.

2

takes the execution trace and the set of generated properties as input. The program
itself must be instrumented to report events that are relevant for monitoring that
the properties are satisfied on a particular execution. This instrumentation can in
some cases be automated. In the rest of this paper the term test case generation is
used to refer to test input generation and property generation and the term runtime
verification is used to refer to instrumentation as well as observation.

Test cases are generated using the JAVA PATHFINDER model checker extended
with techniques for symbolic execution and the properties generated are expressed
in the EAGLE temporal logic, capable of embedding most temporal logics. The
framework described is being applied to a case study, a multi-threaded NASA rover
controller written in C++ (35,000 lines of code), which interprets and executes com-
plicated activity plans. The individual techniques, model checking with symbolic
execution and runtime verification in EAGLE, have been described elsewhere, re-
spectively in [38] and [10]. The contribution of this paper is to demonstrate their
combination on a realistic case study. A special characteristic is that the proper-
ties to be verified are generated automatically from the inputs to the program to be
tested.

The paper is organized as follows. Section 2 outlines our technology for test case
generation: symbolic execution and model checking. Section 3 describes the run-
time verification techniques: temporal logic monitoring and concurrency analysis.
Section 4 describes the case study, where these technologies are applied to a plane-
tary rover controller. Section 5 outlines some related work. Section 6 concludes the
paper and outlines how this work will be continued.

2 Test Case Generation

This section presents the test case generation framework. As mentioned earlier, test
case generation is considered as consisting of test input generation and property
generation.

2.1 Test Input Generation

2.1.1 Model-based testing

In practice today, the generation of test inputs for a program under test is a time-
consuming and mostly manual activity. However, test input generation lends itself
to automation and therefore has been the focus of much research attention – re-
cently it has also been adopted in industry [51,66,18,27]. There are two main ap-
proaches to generating test inputs automatically: a static approach that generates

3

inputs from some kind of model of the system, also called model-based testing,
and a dynamic approach that generates tests by executing the program repeatedly,
while employing criteria to rank the quality of the tests produced [41,65]. The dy-
namic approach is based on the observation that test input generation can be seen as
an optimization problem, where the cost function used for optimization is typically
related to code coverage, e.g. statement or branch coverage. The model-based test
input (test case) generation approach is used more widely, e.g. the TGV tool [2] for
the generation of conformance test suites for protocols, and the AGEDIS tool [1]
for automated generation and execution of test suites for distributed component-
based software, see also Hartman’s survey of the field [31]. The model used for
model-based testing is typically a model of expected system behavior and can be
derived from a number of sources, namely, a model of the requirements, use cases,
design specifications of a system [31] – even the code itself can be used to create a
model, e.g. approaches based on symbolic execution [40,51]. As with the dynamic
approach, it is most typical to use some notion of coverage of the model to derive
test inputs, i.e., generate inputs that cover all transitions, or branches, etc., in the
model. Constructing a model of the expected system behavior can be a costly pro-
cess. On the other hand, generating test inputs just based on a specification of the
input structure and input pre-conditions can be very effective, while typically less
costly. This is the approach pursued in the following.

In [38] a framework is presented that combines symbolic execution and model
checking techniques for the verification of Java programs. The framework can be
used for test input generation for white-box and black-box testing. For white-box
test input generation, the framework model checks the program under test. A testing
coverage criterion, e.g. branch coverage, is encoded in a temporal logic specifica-
tion. Counter-examples to the specification represent paths that satisfy the coverage
criterion. Symbolic execution, which is performed during model checking, com-
putes a representation, i.e., a set of constraints, of all the inputs that execute those
paths. The actual testing requires solving the input constraints in order to instantiate
test inputs that can be executed. The framework can also be used for black-box test
input generation. In this case, the inputs to the program under test are described by
a Java input specification, i.e., a Java program, annotated with special instructions
to model non-determinism and to encode constraints, for symbolic execution. The
framework is then used to check this Java specification, i.e., to systematically ex-
plore the input domain of the program under test and to generate inputs according
to this specification. It is in this latter context (black-box) that we use the frame-
work from [38] in this paper. Note that for black-box test input generation, only the
input specification is required to be expressed in Java; the program under test can
be written in another language, e.g. C++ as it is the case for this paper. Note that
in writing input specifications, we can take full advantage of the expressive power
of the Java language and thus we can easily express inputs with complex structure,
e.g. linked lists, red-black search trees, executive plans.

Using symbolic execution for test input generation is a well-known approach, but

4

int x, y;
read x,y;

1: if (x > y) {
2: x = x + y;
3: y = x - y;
4: x = x - y;
5: if (x > y)
6: assert(false);

}

x: Y, y: X
PC: X>Y

x: X+Y, y: X
PC: X>Y

x: X+Y, y: Y
PC: X>Y

x: X, y: Y
PC: X>Y

x: X, y: Y
PC: true

x: X, y: Y
PC: X<=Y

PC: X>Y & Y<=X
x: Y, y: X

FALSE!
PC: X>Y & Y>X
x: Y, y: X

5 5

4

3

2

1 1

Figure 2. Code for swapping integers and corresponding symbolic execution tree.

typically only handles sequential code with simple data. In [38], this technique has
been extended to handle complex data structures, e.g. lists and trees, concurrency
as well as linear constraints on integer data. Symbolic execution of a program path
results in a set of constraints that define program inputs that execute the path; these
constraints are then solved using off-the-shelf decision procedures to generate con-
crete test inputs. When the program represents an executable input specification,
symbolic execution of the specification enables us to generate inputs that give us,
for instance, full specification coverage. Note that these specifications are typically
not very large – no more than a few thousand lines, in our experience – and hence
will allow efficient symbolic execution.

2.1.2 Symbolic Execution

The enabling technology for black-box test input generation from an input specifi-
cation is the use of symbolic execution. In fact, the same techniques can be applied
for white box testing. The main idea behind symbolic execution [40] is to use sym-
bolic values, instead of actual data, as input values and to represent the values of
program variables as symbolic expressions. The state of a symbolically executed
program includes, in addition to the symbolic values of program variables and the
program counter, a path condition. The path condition is a quantifier-free Boolean
formula over the symbolic inputs; it accumulates constraints which the inputs must
satisfy in order for an execution to follow the particular associated path. A sym-
bolic execution tree characterizes the execution paths followed during the symbolic
execution of a program. The nodes represent program states and the arcs represent
transitions between states.

Consider as an example, taken from [38], the code fragment in Figure 2, which
swaps the values of integer variables x and y, when x is greater than y. Figure 2
also shows the corresponding symbolic execution tree. Initially, the path condition,
PC, is true and x and y have symbolic values X and Y, respectively. At each branch

5

 Model
checking

Decision
procedures

path condition (data)
heap configuration

test coverage
criterion

test suite
[constraints on inputs]

state
input specification

continue/backtrack

Figure 3. Framework for test input generation.

point, PC is updated with assumptions about the inputs according to the alternative
possible paths. For example, after the execution of the first statement, both then and
else alternatives of the if statement are possible and PC is updated accordingly.
If the path condition becomes false, i.e., there is no set of inputs that satisfy it, it
means that the symbolic state is not reachable and symbolic execution does not
continue for that path. For example, statement (6) is unreachable. In order to find
a test input to reach branch statement (5) one needs to solve the constraint X > Y,
e.g. make inputs x and y, 1 and 0, respectively.

Symbolic execution traditionally arose in the context of sequential programs with a
fixed number of integer variables. We have extended this technique [38] to handle
dynamically allocated data structures, e.g. lists and trees, complex preconditions,
e.g. lists that have to be acyclic, other primitive data, e.g. strings, and concurrency.
A key feature of our algorithm is that it starts the symbolic execution of a procedure
on uninitialized inputs and it uses lazy initialization to assign values to these inputs,
i.e., it initializes parameters when they are first accessed during symbolic execution
of the procedure. This allows symbolic execution of procedures without requiring
an a priori bound on the number of input objects. Procedure preconditions are used
to initialize inputs only with valid values.

2.1.3 Framework for Test Input Generation

Our symbolic execution-based framework is built on top of the JAVA PATHFINDER

(JPF) model checker [67]. JPF is an explicit-state model checker for Java programs
that is built on top of a custom-made Java Virtual Machine (JVM). It can handle
all of the language features of Java and in addition treats non-deterministic choice
expressed in annotations of the program being analyzed. JPF has been extended
with a symbolic execution capability which is described in detail in [38].

Figure 3 illustrates our framework for test input generation. The input specification
is given as a non-deterministic Java program that is instrumented to add support for
manipulating formulas that represent path conditions. The instrumentation enables

6

JPF to perform symbolic execution. Essentially, the model checker explores the
symbolic state space of the program, for example, the symbolic execution tree in
Figure 2. A symbolic state includes information about the heap configuration and
the path condition on integer variables. Whenever a path condition is updated, it
is checked for satisfiability using an appropriate decision procedure; currently our
system uses the Omega library [53] that manipulates linear integer constraints. If
the path condition is unsatisfiable, the model checker backtracks. A testing cover-
age criterion is encoded in the property the model checker should check for. This
causes the model checker to produce a counter-example trace, that represents a path
that satisfies the coverage criterion. The model checker also outputs the input con-
straints for this path. Finding a solution to these constraints will allow a valid set of
test data to be produced. Currently a simple approach is used to find these solutions:
only the first solution is considered, using an off the shelf constraint solver. In future
work we will refine the solution discovery process to also consider characteristics
such as boundary cases.

Currently, the model checker is not required to perform state matching, since state
matching is, in general, undecidable when states represent path conditions on un-
bounded data. Note that symbolic execution performed on programs with loops
can explore infinite execution trees, hence symbolic execution might not termi-
nate. Therefore, for systematic state space exploration, limited depth-first search or
breadth-first search is used; our framework also supports various heuristic search
strategies, for example, based on branch coverage [28] or random search.

2.2 Property Generation

Any verification activity is in essence a consistency check between two artifacts. In
the framework presented here the check is between the execution of the program
on a given input and an automatically generated specification for that given input,
consisting of a set of properties about the corresponding execution trace. In other
contexts it may be a check of the consistency between the program and a com-
plete specification of the program under all inputs. This redundancy of providing
a specification in addition to the program is expensive but necessary. The success
of a verification technology partly depends on the cost of producing the specifica-
tion. The hypothesis of this work is twofold. First, focusing on the test effort itself
and writing “testing-oriented” properties, rather than a complete formal specifica-
tion, may be a cheaper development process. Second, automatically generating the
specification from the input may be easier than writing a specification for all inputs.

More precisely, the artifact produced here is a program that takes an input to the
program under test and generates a set of properties representing the test oracle.
The properties are assertions in temporal logic, which are then checked against the
program execution using the runtime verification tools described in Section 3.

7

This approach leverages the runtime verification technology to great effect, just as
test case generation leverages model checking and symbolic execution. In addition,
we anticipate the development of property generation tools specific to a domain or
class of problems. The software under test in our case study is an interpreter for a
plan execution language. In this circumstance, the program to generate properties
uses the decomposition of the plan with respect to the grammar of the plan lan-
guage. Like a trivial compiler, the property generator produces test-input-specific
properties as semantic actions corresponding to the parse. Several of NASA’s soft-
ware systems have an interpreter structure and it is anticipated that this testing
approach can be applied to several of these as well.

3 Runtime Verification

Runtime verification is divided into two parts: instrumentation and event obser-
vation. A monitor receives events from the executing program, emitted by event
generators inserted during instrumentation and dispatches them to a collection of
algorithms, each of which performs a specialized trace analysis. We consider two
kinds of such algorithms: the EAGLE temporal logic monitor and three concur-
rency analyzers, that can detect deadlock potentials, as well as two kinds of data
race potentials. The concurrency analyzers are currently not yet fully integrated in
the presented testing environment, but are mentioned since they form an interest-
ing addition to temporal logic monitoring, experiments have been made and the
intension is to integrate them.

Instrumentation can be achieved by code instrumentation or code wrapping. In the
code instrumentation approach, code that generates the event stream is manually or
automatically inserted into source or object code. In the wrapping approach, calls
to system library functions within user-defined methods are replaced with calls to
wrapper functions that generate the event stream and make the system calls. As
an example, Purify [54] uses code instrumentation to check against illegal reads
(whether e.g. *p accesses a valid address), and uses wrapping to trace memory
allocations and deallocations.

Our experiments have used manual source code instrumentation as well as manual
wrapping. The source code instrumentation approach is used to generate events for
the temporal logic monitoring. The wrapping approach is used to generate events
for the deadlock concurrency analysis, where POSIX thread [49] lock and unlock
methods are wrapped and instrumented. In other work, we describe an instrumen-
tation package, named JSpy [25], that automatically instruments Java bytecode.
However, this could not be applied here as the code to be tested is written in C++.
An automated instrumentation is necessary in order to perform data race analysis
since all accesses to shared variables need to be monitored.

8

3.1 Temporal Logic Monitoring with EAGLE

Many different languages and logics have been proposed for specifying and an-
alyzing properties of program state or event traces, each with characteristics that
make it more or less suitable for expressing various classes of trace properties; they
range from stream-based functional, state chart, single-assignment and dataflow
languages, through pattern-matching languages based on regular (and extended reg-
ular) expressions, to a whole host of modal and, in particular, linear-time temporal
logics. In Section 5, such languages and logics that have been applied directly to
runtime verification are discussed more fully. Since for runtime verification one is
interested in analyzing traces, the framework of linear-time temporal logics (LTL)
[52] appeared most appropriate for our own work, but none of the proposed tem-
poral logics for runtime verification, of which we were aware, provided the right
combination of expressivity, naturalness, flexibility, effectiveness and ease of use
we desired. Of course, more often than not, it can be observed that the greater
the expressivity of the property specification logic, the higher the computational
cost for its analysis. As a consequence this has led us in the past to research effi-
cient algorithms for the evaluation of restricted sub-logics, e.g. pure past-time LTL,
pure future-time LTL, extended regular expressions, metric temporal logic and so
forth. But we were dissatisfied that (i) we had no unifying base logic from which
these different temporal logics could be built and (ii) we were overly restrictive
on the way properties could be expressed, e.g. forcing pure past, or pure future,
etc. Our research thus led us to develop and implement a core, discrete tempo-
ral logic, EAGLE, that supports recursively defined formulas, parameterizable by
both logical formulas and data expressions, over a set of four primitive modalities
corresponding to the “next”, “previous”, “concatenation” and “sequential temporal
composition” operators. The logic, whilst simple, is expressively rich and enables
users define their own set of more complex temporal predicates tuned to the par-
ticular needs of the run-time verification application. Indeed, in [10] it is shown
how a range of finite-trace monitoring logics, including future-time and past-time
temporal logic, extended regular expressions, real-time and metric temporal logics,
interval logics, forms of quantified temporal logics and context free temporal log-
ics, can be embedded within EAGLE. However, in order to be truly fit for purpose,
the implementation of EAGLE must ensure that “users only pay for what they use”.

3.2 Syntax of EAGLE

The syntax of EAGLE is shown in Figure 4. A specification S consists of a declara-
tion part D and an observer part O. The declaration part, D, comprises zero or more
rule definitions R and similarly, the observer part, O, comprises zero or more mon-
itor definitions M, which specify the properties that are to be monitored. Both rules
and monitors are named (N), however, rules may be recursively defined, whereas

9

S :: � D O

D :: � R
�

O :: � M
�

R :: ��� max � min � N � T1 x1 �	�
�	�
� Tn xn � � F

M :: � mon N � F

T :: � Form � primitive type

F :: � True � False � xi � expression

� F � F1 F2 � F1 � F2 � F1 � F2 � F1 � F2�
F ��� F � F1 � F2 � F1; F2 � N � F1 �
�	�	�
� Fn �

Figure 4. Syntax of EAGLE.

monitors are simply non-recursive formulas. Each rule definition R is preceded by
a keyword max or min, indicating whether the interpretation given to the rule is
either maximal or minimal. Rules may be parameterized; hence a rule definition
may have formal arguments of type Form, representing formulas, or of primitive
type int, long, float, etc., representing data values.

An atomic formula of the logic is either a logical constant True or False , or
a Boolean expression over the observer state, or a type correct formal argument
xi, i.e., of type Form or of primitive type bool. Formulas can be composed in the
usual way through the traditional set of propositional logic connectives, � , , � ,
� and � . Temporal formulas are then built using the two monadic temporal op-
erators,

�
F (in the next state F holds) and � F (in the previous state F holds)

and the dyadic temporal operators, F1 � F2 (concatenation) and F1; F2 (sequentially
compose). Importantly, a formula may also be the recursive application of a rule to
some appropriately typed actual arguments. That is, an argument of type Form can
be any formula, with the restriction that if the argument is an expression, it must
be of Boolean type; an argument of a primitive type must be an expression of that
type.

The body of a rule/monitor is thus a (Boolean-valued) formula of the syntactic
category Form (with meta-variables F , etc.). We further require that any recursive
call on a rule is strictly guarded by a temporal operator.

3.3 Semantics of EAGLE

The models of our logic are execution traces. An execution trace σ is a finite se-
quence of observed program states σ � s1s2 �	�
� sn, where �σ � � n is the length of the
trace. Note that the ith state si of a trace σ is denoted by σ � i � and the term σ � i � j � de-

10

σ � i � � D exp iff 1 � i � �σ � and evaluate � exp � � σ � i �	� � � true

σ � i � � D True

σ � i �� � D False

σ � i � � D
� F iff σ � i �� � D F

σ � i � � D F1 F2 iff σ � i � � D F1 and σ � i � � D F2

σ � i � � D F1 � F2 iff σ � i � � D F1 or σ � i � � D F2

σ � i � � D F1 � F2 iff σ � i � � D F1 implies σ � i � � D F2

σ � i � � D F1 � F2 iff σ � i � � D F1 is equivalent to σ � i � � D F2

σ � i � � D
�

F iff i � �σ � and σ � i � 1 � � D F

σ � i � � D � F iff 1 � i and σ � i � 1 � � D F

σ � i � � D F1 � F2 iff � j s.t. i � j � �σ ��� 1 and

σ � 1 � j � 1 � � i � � D F1 and σ � j ���σ � � � 1 � � D F2

σ � i � � D F1; F2 iff � j s.t. i 	 j � �σ ��� 1 and

σ � 1 � j � 1 � � i � � D F1 and σ � j � 1 ���σ � � � 1 � � D F2

σ � i � � D N � F1 �	�	�
�
� Fm � iff

���������� ���������

if 1 � i � �σ � then:

σ � i � � D F � x1 �� F1 �	�	�
� � xm �� Fm �
where (N � T1 x1 �	�	�	� � Tm xm � � F ��� D

otherwise, if i � 0 or i � �σ ��� 1 then:

rule N is defined as max in D

Figure 5. Definition of σ � i � � D F for 0 � i ���σ ��� 1 for some trace σ � s1s2 ����� s �σ � .
notes the sub-trace of σ from position i to position j, both positions being included.
The semantics of the logic is then defined in terms of a satisfaction relation between
execution traces and specifications. That is, given a trace σ and a specification D O,
satisfaction is defined as follows:

σ � � D O iff � � mon N � F ��� O � σ � 1 � � D F

A trace satisfies a specification if the trace, observed from position 1 — the index of
the first observed program state — satisfies each monitored formula. The definition
of the satisfaction relation � � D � � Trace � nat � � Form, for a set of rule definitions
D, is defined inductively over the structure of the formula and is presented in Fig-
ure 5. First of all, note that the satisfaction relation � � D is actually defined for the
index range 0 � i � �σ ��� 1 and thus provides a value for a formula before the start
of observations and also after the end of observations. This approach was taken to

11

fit with our model of program observation and evaluation of monitoring formulas.
The observer only knows the end when it has been passed and no more obser-
vation states are forthcoming. It is at that point that a final value for the formula
needs to be determined. At these boundary points, expressions involving reference
to the observation state (where no state exists) are trivially false. A next-time (resp.
previous-time) formula also evaluates false at the point beyond the end (resp. before
the beginning). A rule, however, has its value at such points determined by whether
it is maximal, in which case it is true, or minimal, in which case it is false. Indeed,
there is a correspondence between this evaluation strategy and maximal (minimal)
fixed point solutions to the recursive definitions. Thus, for example, referring to
the first three rules defined below in Section 3.4 formula Always � F � will evaluate
to true on an empty trace — since Always is defined maximal, whereas formulas
Eventually � F � and Previously � F � will evaluate to false on an empty trace — as
they are defined as minimal.

The propositional connectives are given their usual interpretation. The next-time
and previous-time temporal operators are as expected. The concatenation and se-
quential temporal composition operators are, however, not standard in linear tempo-
ral logics, although the sequential temporal composition is often featured in interval
temporal logics and can also be found in process logics. A concatenation formula
F1 � F2 is true if and only if the trace σ can be split into two sub-traces σ � σ1σ2,
such that F1 is true on σ1, observed from the current position i and F2 is true on
σ2 from position 1 (relative to σ2). Note that the first formula F1 is not checked on
the second trace σ2 and, similarly, the second formula F2 is not checked on the first
trace σ1. Also note that either σ1 or σ2 may be an empty sequence. The sequential
temporal composition differs from concatenation in that the last state of the first
sequence is also the first state of the second sequence. Thus, formula F1; F2 is true
if and only if trace σ can be split into two overlapping sub-traces σ1 and σ2 such

that σ � σ � 1 ���σ1 � � 1 �
1 σ2 and σ1 � �σ1 � � � σ2 � 1 � and such that F1 is true on σ1, observed

from the current position i, and F2 is true on σ2 from position 1 (relative to σ2).
This operator captures the semantics of sequential composition of finite programs.

Finally, applying a rule within the trace, i.e., positions 1 �	�
� n, consists of replacing
the call by the right-hand side of its definition, substituting the actual arguments for
formal parameters. At the boundaries (0 and n � 1) a rule application evaluates to
true if and only if it is maximal.

3.4 Programming in EAGLE

To illustrate EAGLE we describe the framework for the case study to be presented
in Section 4. Consider a controller for an autonomous mobile robot, referred to as
a rover, that executes actions according to a given plan. The goal is to observe that
actions start and terminate in an expected order and within expected time periods.

12

class State extends EagleState {
public int kind;
// 1=start, 2=end, 3=fail

public String action;
public int time;

public boolean start(){
return kind == 1;

}

public boolean end(){
return kind == 2;

}

public boolean fail(){
return kind == 3;

}

public boolean start(String a){
return start() && action.equals(a);

}

public boolean end(String a){
return end() && action.equals(a);

}

public boolean fail(String a){
return fail() && action.equals(a);

}
}

Figure 6. The state in which EAGLE Java expressions are evaluated.

Actions can either end successfully, or they can fail. The rover controller is instru-
mented to emit events containing an event kind (start, end, or fail), an action name
(a string) and a time stamp (an integer) – the number of milliseconds since the start
of the application.

	 event � :: � 	 kind � 	 string � 	 int �

	 kind � :: � start � end � fail

As events are received by the monitor, they are parsed and stored in a state, which
the EAGLE formulas can refer to. The state is an object of a user-defined Java class
and an example is given in Figure 6. The class defines the state and a set of methods
observing the state, which can be referred to in EAGLE formulas. To illustrate the
use of formulas as parameters to rules, the following EAGLE fragment defines three
rules, Always, Eventually and Previously – corresponding to the usual temporal
operators for “always in the future”, “eventually in the future” and “previously in
the past”.

max Always � Form f � � f � Always � f �
min Eventually � Form f � � f � � Eventually � f �
min Previously � Form f � � f � � Previously � f �

The following two monitors check that every observed start of the particular action
“turn” is matched by a subsequent end of that action and conversely, that every end

13

of the action is preceded by a start of the action.

mon M1 � Always � start � “turn” � � Eventually � end � “turn” �
�	�
mon M2 � Always � end � “turn” � � Previously � start � “turn” �	�	�

To illustrate data parameterization, consider the more generic property: “for any
action, if it starts it must eventually end” and conversely for the past-time case.
This is stated as follows.

min EventuallyEnd � String a � � Eventually � end � a �
�
min PreviouslyStart � String a � � Previously � start � a �	�
mon M3 � Always � start � � � EventuallyEnd � action �	�
mon M4 � Always � end � � � PreviouslyStart � action �	�

Consider the following properties about real-time behavior, such as the property
“when the rover starts a turn, the turn should end within 10 – 30 seconds”. For this,
a real-timed version of the Eventually operator is needed. The formula
EventuallyWithin � f � l � u � monitors that f occurs within the relative time bounds
l (lower bound) and u (upper bound), measured in seconds. It is defined with the
help of the auxiliary rule EventuallyAbs, which is an absolute-timed version.

min EventuallyAbs � Form f � int al � int au � �
time � au

�	� f time � al � �
� � f �

EventuallyAbs � f � al � au �	�
�

min EventuallyWithin � Form f � int l � int u � �
EventuallyAbs � f � time � � l � 1000 ��� time � � u � 1000 �	�

Note that variable time is defined in the state and contains the latest time stamp in
milliseconds since the start of the application. The property “when the rover starts
a turn, the turn should end within 10 – 30 seconds” can now be stated as follows:

mon M5 � Always � start � “turn” � � EventuallyWithin � end � “turn” ��� 10 � 30 �	�

3.5 Online Evaluation Algorithm

A monitoring algorithm for EAGLE determines whether a trace σ models a mon-
itoring specification D O. Our algorithm operates in an online fashion. That is, it

14

is applied sequentially at each state of σ and does not refer back to prior states or
forward to future states. This allows the algorithm to be used in online-monitoring
contexts.

Ideally, if a monitoring specification is expressible in a more restricted logic, e.g.
LTL, then the EAGLE algorithm should perform about as well as an efficient algo-
rithm for the restricted logic. We have for example proved this for LTL [9].

The algorithm employs a function eval � F � s � that examines a state, s, and transforms
a monitor F into a monitor F � such that s � σ � 1 � � D F iff s � σ � 2 � � D F � .

The algorithm is, where possible, a direct implementation of the definition of the
EAGLE semantics. So for example if D monitors a formula F1 � F2, then (with a
slight overloading of the notation)

eval � F1 � F2 � s � � eval � F1 � s � � eval � F2 � s ���
Furthermore,

eval � � F � s � � F �
However, an online algorithm that examines a trace in temporal order cannot treat
the previous-state operator so easily. Thus the algorithm maintains an auxiliary data
structure used by eval on sub-formulas headed by the � operator, that records the
result of (partially) evaluating the formula in the previous state.

This is illustrated as follows.

min R � int k � � � � y � 1 � � k �
mon M � Eventually � R � x �
�

This monitor will be true if somewhere in the trace there are two successive states
such that the value of y in the first state is one less than the value of x in the second
state. More generally, notice that the combination of parameterizing rules with data
values and use of the next and previous state operators enable constraints that relate
the values of state variables occurring in different states.

Since eval recursively decomposes the formulas, eventually eval will be called on
� � y � 1 � � k � . Note the state variable y refers to the value of y in the previous state,
while the formal parameter k is bound to the value of x in the current state. Since the
previous state is unavailable, in the prior step the algorithm must take some action to
record relevant information. Our algorithm pre-evaluates and caches the evaluation
of any formula P headed by a previous-state operator, in this case formula y � 1 � �
k. However, since the value of k will not be known at that point, the evaluation is
partial. In particular note that the atomic formulas and the underlying expression

15

language (in our case this is Java expressions), must be partially evaluated 5 . Also
note that since formula P can be arbitrarily complex, in particular another previous-
state operator may be nested within, the pre-evaluation is done by a recursive call
to eval.

This is basic idea of the algorithm. One subtle point is that the sub-formulas that
must be pre-evaluated must be identified and properly initialized prior to process-
ing the first state. This is done by expanding monitor formulas by unfolding rule
definitions, while avoiding infinite expansion due to recursive rule definitions. At
the end of the trace, function value is called yielding a truth value as the final result
of evaluating each monitor over the trace. Function value implements the EAGLE

semantics with respect to boundary conditions regarding the end of the trace.

Function eval yields a formula that may be simplified without altering the correct-
ness of the algorithm. Indeed the key to efficient monitoring and provable space
bounds is adequate simplification. In our implementation, formulas are represented
in disjunctive normal form where each literal is an instance of negation, the previ-
ous, next, concatenation or sequential composition operator or a rule application.
Subsumption, i.e., simplifying � a b � � a to a, is essential.

3.6 Complexity of EAGLE

It is evident from the semantics given in Section 3.3 that, in theory, EAGLE is a
highly expressive and powerful language; indeed, given the unrestricted nature of
the data types and expression language, it is straightforward to see it is Turing-
complete. However, what is of interest is the performance of EAGLE on special
cases, i.e., for arbitrary monitors defined over fixed rule sets that implement stan-
dard temporal logics. Furthermore one must distinguish complexity due to any data
computation ascribed to methods defined for state update and predicate evaluation
from the evaluation of the purely temporal aspects of the logic. An alternative way
of viewing this is to show that our algorithm can meet known optimal bounds for
various sub-logics embedded within Eagle. To that end, there are some initial com-
plexity results that are of interest.

Our first result relates to an embedding of propositional linear-time temporal logic
(LTL), over both future and past. In [9], we show that the step evaluation for an ini-
tial LTL formula of size m has an upper time complexity bound of O � m422m log2 m �
and a space bound of O � m22m logm � , thus showing that the evaluation at any point
is not dependent on the length of the history, i.e., the input seen so far. The result is
close to the lower bound of O � 2 �

m � for monitoring LTL given in [60].

5 A simpler alternative to partial evaluation is to form a closure and do the complete eval-
uation when all variables are bound.

16

For metric temporal logic (MTL) where time constants are stated as natural num-
bers, embedded in EAGLE, it can be shown that the time and space complexity
of monitoring of a formula is 2O � m � where m is the size of the monitored formula
plus the sum of all time constants that appear in the formula. Note that the bound,
although exponential, is independent of the length of the trace. The proof for this
complexity bound is similar to the proof of the same result in [64].

For real-time logic where time constants are stated as real numbers, embedded in
EAGLE, the time and complexity bound, although independent of the length of the
trace, is dependent on the minimum of all time differences between any two events
in the trace. The bound is given by 2O � mt � δ � where m is the size of the formula, t is
the sum of all time constants appearing in the formula and δ is the minimum time
difference between any two events in the trace monitored.

3.7 A Java Library for Monitoring EAGLE Properties

The EAGLE monitoring engine implements the EAGLE monitoring algorithm as a
Java library. The library provides three basic methods, parse, eval and value,
that can be called by any client program for the purpose of monitoring. The first
method parse takes a file containing a specification involving several monitors
(sets of monitored formulas) written in EAGLE and compiles them internally into
data structures representing monitors. After compilation, the client program calls
the method eval iteratively with an observer state. This call internally modifies
the monitors according to the definition of eval in subsection 3.5. If a monitored
formula becomes false during this modification, it calls a method error which the
client program is expected to implement. Similarly, if a formula becomes true the
method success is called. It is up to the client program to define the observer
state. The client program also modifies the observer state at every event. Once all
the events are consumed the client program calls the method value to check if the
monitored formulas are satisfied by the sequence of observer states. If a formula is
not satisfied the method warning implemented by the client is called; otherwise,
the method nowarning is invoked.

3.8 Concurrency Analysis

A scheduler may schedule the different threads in a multi-threaded program, such
as the rover controller, in a non-deterministic manner, causing the order in which
threads access shared objects to differ among different executions on the same in-
put. This may lead to different observed execution traces, causing temporal logic
specifications to be violated in some traces while not being violated in others. Con-
sequently one cannot infer that a temporal property holds for all traces (that is,
holds for the program on some particular input) based on the observation that it

17

holds on some trace. The ideal solution would be a framework for transforming
temporal properties to stronger properties that when checked will be less sensitive
to the non-determinism of traces. Ideally one would like to be able to infer that if
the property holds on some trace then with high probability it holds on all traces.
Or perhaps more importantly: if the property is violated on some trace then it is
violated with high probability on any trace, thereby increasing our chance of de-
tecting the problem on a random trace. Although this may appear a very difficult
problem to solve for the general case, it actually can be done for certain properties
that are generally desirable for concurrent programs: deadlock freedom and data
race freedom.

Deadlocks can occur when two or more threads acquire locks in a cyclic manner.
As an example of such a situation consider two threads T1 and T2 both acquiring
locks A and B. Thread T1 acquires first A and then B before releasing A. Thread T2

acquires B and then A before releasing B. This situation poses a deadlock potential
since thread T1 can acquire A where upon thread T2 can acquire B, resulting in a
deadlocked situation. Potentials for such deadlocks can be detected by identifying
cycles in lock graphs [12]. Another main issue for programmers of multi-threaded
applications is to avoid data races where several threads access a shared object si-
multaneously. If all threads utilize the same lock when accessing an object, mutual
exclusion is guaranteed, otherwise data races are possible. The Eraser algorithm
[57] can detect such data races by maintaining a so-called lock set for each mon-
itored variable. Recent work [5] has identified another kind of data races, termed
high-level data races, that are not detectable by the Eraser algorithm. These races
can occur when sets of fields are accessed incorrectly. Monitors have been devel-
oped for analyzing traces for the three above mentioned concurrency problems and
automated instrumentation has been done for Java. For C++, manual instrumenta-
tion for deadlock analysis has been done using wrapping as mentioned earlier. For
the two kinds of data race analysis, automated instrumentation of C++ remains to
be done.

Although the above mentioned concurrency algorithms have been implemented as
specialized programs, one can well imagine using EAGLE for specifying such prop-
erties. As an experiment, the deadlock detection algorithm has been encoded in EA-
GLE as described in [9], although restricted to the detection of deadlocks between
pairs of threads. The general algorithm described in [12] can detect deadlock poten-
tials between any number of threads. Further work will integrate the concurrency
algorithms and EAGLE fully.

4 Case Study: A Planetary Rover Controller

The subject of the case study described here is a controller for the K9 planetary
rover, developed at NASA Ames Research Center. A full account of this controller

18

Plan � Node

Node � Block � Task

Block � (block

NodeAttr

:node-list (NodeList))

NodeList � Node NodeList � ε
Task � (task

NodeAttr

:action Symbol

:duration DurationTime)

NodeAttr � :id Symbol
�
:start-condition Condition �

�
:end-condition Condition �

�
:continue-on-failure �

Condition � (time StartTime EndTime)

(block
:id plan
:continue-on-failure
:node-list (

(task
:id drive1
:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1
:duration 20

)
(task
:id drive2
:end-condition (time +10 +16)
:action BaseMove2
:duration 20

)))

Figure 7. Plan grammar (left) and an example of a plan (right).

is described in [14]. The case study was done in collaboration with the programmer
of the controller. First we present a description of the rover controller, including a
description of the plan language (the input to the controller). Then, an outline is
given of how plans (test inputs) and associated temporal logic properties can be
automatically generated using model checking.

4.1 The Rover Controller

The rover controller is a multi-threaded system (35,000 lines of C++ code) that
receives flexible plans from a planner, which it executes according to a plan lan-
guage semantics. A plan is a hierarchical structure of actions that the rover must
perform. Traditionally, plans are deterministic sequences of actions. However, in-
creased rover autonomy requires added flexibility. The plan language therefore al-
lows for branching based on conditions that need to be checked and also for flexi-
bility with respect to the starting time and ending time of an action.

This section gives a short presentation of the (simplified) language used in the de-
scription of the plans that the rover executive executes.

4.1.1 Plan Syntax

A plan is a node; a node is either a task, corresponding to an action to be exe-
cuted, or a block, corresponding to a logical group of nodes. Figure 7 (left) shows
the grammar for the plan language. All node attributes, with the exception of the
id of the node, are optional. Each node may specify a set of conditions, e.g. the

19

start condition (that must be true at the beginning of node execution) and the end
condition (that must be true at the end of node execution). Each condition includes
information about a relative or absolute time window, indicating a lower and an
upper bound on the time. Flag continue-on-failure indicates what the behavior will
be when an node failure is encountered. Attribute duration specifies the duration of
the action. Figure 7 (right) shows a plan that has one block with two tasks (drive1
and drive2). The time windows here are relative (indicated by the ’+’ signs in the
conditions).

4.1.2 Plan Semantics

For every node, execution proceeds through the following steps:

� Wait until the start condition is satisfied; if the current time passes the end of the
start condition, the node times out and this is a node failure.

� The execution of a task proceeds by invoking the corresponding action (e.g. a
routine that interacts with the rover hardware). The action takes the time spec-
ified in the :duration attribute when the software is run in simulation mode,
with a hardware simulator. The task succeeds or fails, for example depending on
whether the time window is respected. The execution of a block simply proceeds
by executing each of the nodes in the node-list in order.

� If time exceeds the end condition, the node fails. On a node failure, when exe-
cution returns to the sequence, the value of flag continue-on-failure of the failed
node is checked. If true, execution proceeds to the next node in the sequence.
Otherwise the node failure is propagated to any enclosing nodes. If the node fail-
ure passes out to the top level of the plan, the remainder of the plan is aborted.

4.2 Test Input Generation

Figure 8 shows part of the Java code, referred to as the universal planner, that is
used to generate plans (i.e., test inputs for the executive) and properties (i.e., test
oracles, as discussed in the next section). The framework described in Section 2
is used to generate test inputs from a specification written as an annotated Java
program. Model checking with symbolic execution generates the inputs. The input
plans are specified using non-deterministic choice (choosemethods) over the struc-
tures allowed in the grammar presented in Figure 7 and constraints over the integer
variables in the input structure (updates to the path condition _pc). For brevity,
only a small sample set of constraints is shown here (stating that the time points
are proper positive values defining intervals and the end time is larger than the start
time of an interval). The actual testing requires solving these constraints in order to
instantiate input plans that can be then executed (method solution). To illustrate
the flexibility of our approach, some of the variables are considered concrete inputs,

20

class UniversalPlanner { ...
static int nNodes; /*max number of nodes*/
static void Plan(int nn) {

nNodes = nn;
Node plan = UniversalNode();
print(plan);
compute_and_print_properties(plan);
assert(false);

}
static Node UniversalNode() {

if (nNodes == 0) return null;
if (chooseBool()) return null;
if (chooseBool())
return UniversalTask();

return UniversalBlock();
}

static Node UniversalTask() {
int id = nNodes; nNodes--;
UniversalAttributes();
Task t = new Task(id, start, end,

continueOnFailure,duration);
return t;

}
static Node UniversalBlock() {

int id = nNodes; nNodes--;
ListOfNodes l = new ListOfNodes();
for (Node n = UniversalNode();n != null;

n = UniversalNode()) l.add(n);
UniversalAttributes();
Block b = new Block(id, l, start, end,

continueOnFailure);
return b;

}

static TimeCondition start, end;
static int duration;
static boolean continueOnFailure;

static UniversalAttributes() {
id = new Symbol();
SymInt sTime1 = new SymInt();
SymInt sTime2 = new SymInt();
SymInt eTime1 = new SymInt();
SymInt eTime2 = new SymInt();
SymInt d = new SymInt();

/* constraints */
SymInt._pc._add_GE(sTime1,0);...
SymInt._pc._add_LT(sTime1,sTime2);
SymInt._pc._add_LT(eTime1,eTime2);
SymInt._pc._add_LE(sTime1,eTime1);
...
duration = d.solution();
start = new TimeCondition(sTime1.solution(),

sTime2.solution());
end = new TimeCondition(eTime1.solution(),

eTime2.solution());
continueOnFailure = chooseBool();

} }

Figure 8. Code that generates input plans and properties.

e.g. the maximum allowed number of nodes in a generated structure (nNodes) and
yet others, e.g. the boolean values, are generated using non-deterministic choice.

The assertion in the program, at the end of the Plan method, specifies that it is not
possible to create a “valid” plan (i.e., executions that reach this assertion generate
valid plans). JPF model checks the universal planner and is thus used to explore
the state space of the input plans that have up to nNodes nodes. Different search
strategies find multiple counter-examples; for each counter-example (representing a
valid plan), a set of properties associated with the plan is computed. The generated
plan and properties are printed to files that are then used for testing the rover.

class SymInt { ...
static PathCondition _pc;
...
int solution() { ... }

}

class PathCondition { ...
Constraints c;
void _add_LT(SymInt e1, SymInt e2){

c.add_constraint_LT(e1,e2);
if (!c.is_satisfiable())

backtrack();
return;

} }

Figure 9. Library classes for symbolic execution.

Figure 9 gives part of the library classes that enable JPF to perform symbolic execu-
tion. Class SymInt supports manipulation of symbolic integers. The static field

21

SymInt._pc stores the (numeric) path condition. Method _add_LT updates the path
condition with a constraint encoding e1 less-than e2. Method is_satisfiable
uses the Omega library to check if the path condition is infeasible (in which case,
JPF will backtrack). The solution method first solves the constraints and then
returns one solution for a symbolic integer.

4.3 Property Generation

For each generated plan, a set of properties formulated in the EAGLE temporal logic
is automatically generated, according to the semantics of the planning language.
Note that such a set of properties is generated for each plan and monitored during
the execution of that specific plan. In generating these properties, the following
predicates are used: start � id � (true immediately after the start of the execution of the
node with the corresponding id), end � id � (true when the execution of the node ends
successfully) and fail � id � (true when the execution of the node ends with a failure).
The code has been instrumented to monitor these predicates and the validity of the
generated properties is checked on execution traces. As an example, some of the
generated properties for the plan from Figure 7 (right) are shown in Figure 10.

The set of generated properties does not fully represent the semantics of the plan.
As an example, the illustrated properties do not state the fact that drive1 should
only start once. A complete specification of the plan semantics would require a
more elaborate set of formulas. This would be possible since EAGLE is a very
expressive logic. However, the current set of properties generated for a plan seems
appropriate to catch many kinds of errors. The effort invested in designing what
properties to be generated for a particular plan was minimal and likely so due to
the fact that not all the plan semantics is modeled. The properties could be inferred
very directly from the informal plan semantics communicated by the engineer that
programmed the system.

4.4 Results

The tool is fully automated after setup and does not require any input from the user
to run. The tool generates a set of test cases, each consisting of a plan (input) and a
set of properties (expected of the output). A script will execute each test case, first
by running the controller, together with a rover hardware simulator, on the input
plan and then calling EAGLE to verify that the generated execution trace satisfies
the properties. Due to the automated nature of the process, the developer of the K9
rover controller is capable of running it himself. All test results used in the process
have been generated by the developer running the tool.

The automated testing system found (in the first application) a missing feature that

22

� M1 = Eventually(start("plan"))

i.e., the initial node plan should eventually start.

� M2 = Always(start("plan") -> Eventually(end("plan")))

i.e., if plan starts, then it should eventually terminate successfully.

� M3 = Always(start("plan") -> EventuallyWithin(start("drive1"),1,5))

i.e., if plan starts, then drive1 should start within 1 and 5 time units.

� M4 = Always((end("drive2") \/ fail("drive2")) ->
Eventually(end("plan")))

i.e., successful or failed termination of drive2 implies successful termination
of the whole plan (due to continue-on-failure flag).

� M5 = Always(start("drive1") ->
(EventuallyWithin(end("drive1"),1,30) \/

Eventually(fail("drive1"))))

i.e. if drive1 starts, then it should end successfully within 1 and 30 time units or
it should eventually terminate with a failure.

� M6 = Always(fail("drive1") -> ~ Eventually(start("drive2")))

i.e., if drive1 fails, then drive2 should not start.

� M7 = Always(end("drive1") -> Eventually(start("drive2")))

i.e., if drive1 ends successfully, then drive2 should eventually start.

� M8 = Always(start("drive2") -> Eventually(fail("drive2")))

i.e., if drive2 starts, then it should eventually fail (due to the time conditions).

Figure 10. Properties representing partial semantics of plan in Fig. 7.

had been overlooked by the developers: the lower bounds on execution duration
were not enforced. Hence, where a certain generated temporal logic formula pre-
dicted failure, the execution in fact wrongly succeeded, and this was detected as a
violation of the temporal property. The error was not corrected immediately after
its detection, and showed up later during actual rover operation in a field test be-
fore it was corrected. A preliminary version of the testing environment, not using
automated test case generation, found a deadlock and a data race. The data race,
involving access to a shared variable used to communicate between threads, was
suspected by the developer, but had not been confirmed in code. The trace anal-
ysis allowed the developer to see the read/write pattern clearly and redesign the
communication.

The K9 rover controller, essentially an interpreter, seemed to be very well suited
for this kind of testing framework. It was in particular simple to determine what
temporal properties should be generated for a plan. This is, however, not as easy
in general for other kinds of applications. Another drawback is the fact that only

23

events of the form start, end and fail are monitored. Hence, failures which can only
be detected by monitoring sub-events between these events cannot be observed.

5 Related Work

5.1 Test Case Generation

In section 2 we have already discussed some of the related work on specification-
based testing. Here we link our approach to test input generation tools.

The idea of using constraints to represent inputs dates back at least three decades
[37,17,40,55]; the idea has been implemented in various tools including EFFIGY
[40], TEGTGEN [42] and INKA [26]. Most of this work has been focused on solv-
ing constraints on primitive data, such as integers and booleans.

Some recent frameworks, most notably TestEra [46] and Korat [13,45], do sup-
port generation of complex structures. TestEra generates inputs from constraints
given in Alloy, a first-order declarative language based on relations. TestEra uses
off-the-shelf SAT solvers to solve constraints. Korat generates inputs from con-
straints given as Java predicates. The Korat algorithm has recently been included
in the AsmL Test Generator [22] to enable generation of structures. TestEra and
Korat focus on solving structural constraints. They do not directly solve constraints
on primitive data as we do in our framework. Instead, they systematically try all
primitive values within given bounds, which may be inefficient.

The first version of AsmLT Test Generator [27] was based on finite-state machines
(FSMs): an AsmL [30] specification is transformed into an FSM and different
traversals of the FSM are used to construct test inputs. Korat adds structure gen-
eration to generation based on finite-state machines [27]. AsmLT was successfully
used for detecting faults in a production-quality XPath compiler [63].

Several researchers have investigated the use of model checking for test input gen-
eration (see [36] for a good survey). Gargantini and Heitmeyer [23] use a model
checker to generate tests that violate known properties of a specification given in
the SCR notation. Ammann and Black [4] combine model checking and mutation
analysis to generate test cases from a specification. Rayadurgam et al. use a struc-
tural coverage-based approach to generate test cases from specifications given in
RSML � e by using a model checker [35]. Hong et al. formulate a theoretical frame-
work for using temporal logic to specify data-flow test coverage in [36]. These
approaches cannot handle structurally complex inputs.

There are many tools that produce test inputs from a description of tests. QuickCheck

24

[16] is a tool for testing Haskell programs. It requires the tester to write Haskell
functions that can produce valid test inputs; executions of such functions with dif-
ferent random seeds produce different test inputs. Our work differs in that it requires
only a specification that characterizes valid test inputs and then uses a general-
purpose search to generate all valid inputs up to a certain size. DGL [48] and
lava [62] generate test inputs from production grammars. They were used mostly
for random testing, although they can also systematically generate test inputs. How-
ever, they cannot easily represent inputs with complex structure, as we do by using
Java as a specification language.

5.2 Runtime verification

The EAGLE logic and its implementation for runtime monitoring has been signif-
icantly influenced by earlier work on the executable, trace-generating as well as
trace-checking, temporal logic METATEM [8]. In the parallel work [44] a frame-
work is described where recursive equations are used to implement a real-time
logic. Although this is a similar approach to the one presented in this paper, EAGLE

goes much further and provides the language of recursive equations to the user,
supporting a mixture of future-time and past-time operators and treating real time
as a special case of data values, hence allowing a more general logic.

The most directly case study specific related work is presented in [11], which for the
same rover application describes a framework for generating timed automata from
plans. From the timed automata, monitors are generated that can monitor the plan
execution. Since EAGLE can embed timed automata, EAGLE can be seen as a more
general framework, that also allows for more partial temporal logic specifications.
The main difference in approach is that [11] defines the full semantics of a plan,
whereas the here presented temporal logic approach defines a partial semantics.

At a more general level, several runtime verification systems have recently been
developed, a collection of which have been presented at a series of runtime ver-
ification (RV) workshops [3]. Linear temporal logic (LTL) [52] has been core to
several of these attempts. The MaC tool [39] supports a past-time interval tempo-
ral logic. Real-time is modeled by introducing an explicit state in the specification,
containing explicit clock variables, which get updated when new events arrive. The
commercial tools Temporal Rover and DBRover [18,19], support future-time and
past-time LTL properties, annotated with real-time and data constraints. Alternating
automata algorithms to monitor LTL properties are proposed in [21] and a special-
ized LTL collecting statistics along the execution trace is described in [20]. Various
algorithms to generate testing automata from temporal logic formulas are discussed
in [56,50]. Complexity results for testing a finite trace against temporal formulas
expressed in different temporal logics are investigated in [47]. A technique where
execution events are stored in an SQL database at runtime is proposed in [43]. These

25

events are then analyzed by queries derived from interval logic temporal formulas
after the program terminates. The PET tool [29] uses a future-time temporal logic
formula to guide the execution of a program for debugging purposes. The model-
based specification language AsmL is being used for runtime verification [7], as
well as for test case generation (see Section 5.1). AsmL is a very comprehensive
general-purpose specification language for abstractly specifying computation steps.
It does not directly support temporal logic.

Our own related work includes the development of several algorithms for moni-
toring with temporal logic, such as generating dynamic programming algorithms
for past-time logic [34], using a rewriting system for monitoring future-time logic
[33,32], or generating Büchi automata inspired algorithms adapted to finite-trace
LTL [24]. A logic based on extended regular expressions is described in [59].
Java MultiPathExplorer [61] is a tool which checks a past-time LTL safety for-
mula against a partial order extracted online from an execution trace. POTA [58]
is another partial-order trace analyzer system. Java-MoP [15] is a generic logic
monitoring tool encouraging “monitoring-oriented programming”. JNuke [6] is a
framework that combines runtime verification and model checking. It is written in
C, achieving scalability through high performance and low memory usage.

6 Conclusions and Future Work

A framework for testing based on automated test case generation and runtime ver-
ification has been presented. This paper proposed and demonstrated the use of
model checking and symbolic execution for test case generation using the JAVA

PATHFINDER tool, and the use of temporal logic monitoring in EAGLE during the
execution of the test cases. The framework requires construction of a test input and
property generator for the application. From that, a large test suite can be automat-
ically generated, executed and verified to be in conformity with the properties. For
each input is generated a set of EAGLE properties that must hold when the pro-
gram under test is executed on that input. The program is instrumented to emit an
execution log of events. An observer checks that the event log satisfies the set of
properties.

We take the position that writing test oracles as temporal logic formulas is both
natural and leverages algorithms that efficiently check if execution on a test input
conforms to the properties. Due to EAGLE’s expressive power, properties can fur-
thermore be stated in combinations of different sub-logics and notations, such as
for example temporal logic, regular expressions and state machines. While property
definition in general often is difficult, an effective approach for some domains may
be to write a property generator, rather than a universal set of properties that are in-
dependent of the test inputs. Note also that the properties need not completely char-
acterize correct execution. Instead, a user can choose among a spectrum of weak

26

but easily generated properties to strong properties that may require construction
of complex formulas.

In the near future, we will be exploring how to improve the quality of the generated
test suite by altering the search strategy of the model checker and by improving
the symbolic execution technology. We will also investigate improvements to the
EAGLE logic and its engine. Experiments will be made combining different speci-
fication paradigms, such as temporal logic, regular expressions and state machines,
all currently expressible in EAGLE within a single framework. Furthermore, an at-
tempt will be made to integrate the concurrency analysis algorithms for deadlock
and data race analysis fully into EAGLE. We are continuing the work on instru-
mentation of Java bytecode and will extend this work to C and C++. Our research
group has done fundamental research in other areas, such as software model check-
ing (model checking the application itself and not just the input domain) and static
analysis. In general, our ultimate goal is to combine the different technologies into
a single coherent framework.

References

[1] AGEDIS - model based test generation tools. http://www.agedis.de.

[2] The test sequence generator TGV. http://www-verimag.imag.fr/~async/TGV.

[3] 1st, 2nd, 3rd and 4th Workshops on Runtime Verification (RV’01 - RV’04), volume
55(2), 70(4), 89(2), (RV’04 to be published) of ENTCS. Elsevier Science: 2001, 2002,
2003, 2004.

[4] P. Ammann and P. Black. A Specification-Based Coverage Metric to Evaluate Test
Sets. In Proceedings of the 4th IEEE International Symposium on High Assurance
Systems and Engineering, pages 239–248, November 1999.

[5] C. Artho, K. Havelund, and A. Biere. High-level Data Races. In VVEIS’03: The
First International Workshop on Verification and Validation of Enterprise Information
Systems, France, April 2003.

[6] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller. JNuke:
Efficient Dynamic Analysis for Java. In Proc. of CAV’04: Computer Aided Verification
– to appear, Lecture Notes in Computer Science. Springer-Verlag, 2004.

[7] M. Barnett and W. Schulte. Contracts, Components, and their Runtime Verification.
Technical Report MSR-TR-2002-38, Microsoft Research, April 2002. Download:
http://research.microsoft.com/fse.

[8] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An
Introduction. Formal Aspects of Computing, 7(5):533–549, 1995.

[9] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program Monitoring with LTL
in EAGLE. In Proceedings of Workshop on Parallel and Distributed Systems: Testing
and Debugging (PADTAD’04) – to appear, Santa Fe, New Mexico, USA, April 2004.

27

[10] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. In B. Steffen and G. Levi, editors, Proceedings of Fifth International
Conference on Verification, Model Checking and Abstract Interpretation, volume 2937
of Lecture Notes in Computer Science, pages 44–57. Springer, January 2004.

[11] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis. Testing Conformance of Real-
Time Software by Automatic Generation of Observers. In Proc. of RV’04: Fourth
International Workshop on Runtime Verification, Electronic Notes in Theoretical
Computer Science, Barcelona, Spain, 2004. Elsevier Science.

[12] S. Bensalem and K. Havelund. Deadlock Analysis of Multi-Threaded Java Programs.
Kestrel Technology, NASA Ames Research Center, California, October 2002.

[13] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on
Java Predicates. In Proc. International Symposium on Software Testing and Analysis
(ISSTA), pages 123–133, July 2002.

[14] G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
A. Venet, and W. Visser. Experimental Evaluation of Verification and Validation
Tools on Martian Rover Software. In SEI Software Model Checking Workshop, 2003.
Extended version to appear in the journal Formal Methods in System Design.

[15] F. Chen and G. Roşu. Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation. In Proc. of RV’03: the Third
International Workshop on Runtime Verification, volume 89(2) of Electronic Notes
in Theoretical Computer Science, Boulder, USA, 2003. Elsevier Science.

[16] K. Claessen and J. Hughes. Testing Monadic Code with QuickCheck. In Proc. ACM
SIGPLAN workshop on Haskell, pages 65–77, 2002.

[17] L. A. Clarke. A System to Generate Test Data and Symbolically Execute Programs.
IEEE Transactions on Software Engineering, SE-2:215–222, September 1976.

[18] D. Drusinsky. The Temporal Rover and the ATG Rover. In Proc. of SPIN’00: SPIN
Model Checking and Software Verification, volume 1885 of Lecture Notes in Computer
Science, pages 323–330, Stanford, California, USA, 2000. Springer.

[19] D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In Proc. of
CAV’03: Computer Aided Verification, volume 2725 of Lecture Notes in Computer
Science, pages 114–118, Boulder, USA, 2003. Springer-Verlag.

[20] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting Statistics over Runtime
Executions. In Proc. of RV’02: The Second International Workshop on Runtime
Verification, volume 70(4) of Electronic Notes in Theoretical Computer Science, Paris,
France, 2002. Elsevier Science.

[21] B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata.
Formal Methods in System Design, 24(2):101–128, March 2004.

[22] Foundations of Software Engineering, Microsoft Research. The AsmL test generator
tool. http://research.microsoft.com/fse/asml/doc/AsmLTester.html.

28

[23] A. Gargantini and C. Heitmeyer. Using Model Checking to Generate Tests from
Requirements Specifications. In Proceedings of the 7th European engineering
conference held jointly with the 7th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 146–162. Springer-Verlag, 1999.

[24] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proc. of ASE’01: International Conference
on Automated Software Engineering, pages 412–416. Institute of Electrical and
Electronics Engineers, Coronado Island, California, 2001.

[25] A. Goldberg and K. Havelund. Instrumentation of Java Bytecode for Runtime
Analysis. In Proc. Formal Techniques for Java-like Programs, volume 408 of
Technical Reports from ETH Zurich, Switzerland, 2003. ETH Zurich.

[26] A. Gotlieb, B. Botella, and M. Rueher. Automatic Test Data Generation using
Constraint Solving Techniques. In Proc. International Symposium on Software Testing
and Analysis (ISSTA), pages 53–62, Clearwater Beach, FL, March 1998.

[27] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Finite State
Machines from Abstract State Machines. In Proc. International Symposium on
Software Testing and Analysis (ISSTA), pages 112–122, July 2002.

[28] A. Groce and W. Visser. Model Checking Java Programs using Structural Heuristics.
In Proceedings of the 2002 International Symposium on Software Testing and Analysis
(ISSTA), pages 12 – 21. ACM Press, July 2002.

[29] E. Gunter and D. Peled. Tracing the Executions of Concurrent Programs. In Proc.
of RV’02: Second International Workshop on Runtime Verification, volume 70(4)
of Electronic Notes in Theoretical Computer Science, Copenhagen, Denmark, 2002.
Elsevier Science.

[30] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification and Validation
Methods, pages 9–36. Oxford University Press, 1995.

[31] A. Hartman. Model Based Test Generation Tools.
http://www.agedis.de/documents/ModelBasedTestGenerationTools_cs.pdf.

[32] K. Havelund and G. Roşu. Monitoring Programs using Rewriting. In Proceedings
of the International Conference on Automated Software Engineering (ASE’01), pages
135–143. IEEE CS Press, Coronado Island, California, 2001. Extended version to
appear in the journal Automated Sofware Engineering.

[33] K. Havelund and G. Roşu. An Overview of the Runtime Verification Tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, March 2004.

[34] K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS’02), volume 2280 of
LNCS, pages 342–356. Springer, 2002. Extended version to appear in the International
Journal on Software Tools for Technology Transfer.

[35] M. P. E. Heimdahl, S. Rayadurgam, W. Visser, D. George, and J. Gao. Auto-
Generating Test Sequences using Model Checkers: A Case Study. In Proc. 3rd

29

International Workshop on Formal Approaches to Testing of Software (FATES),
volume 2931 of Lecture Notes in Computer Science, pages 42–59, Montreal, Canada,
October 2003. Springer.

[36] H. Seok Hong, I. Lee, O. Sokolsky, and H. Ural. A Temporal Logic Based Theory
of Test Coverage and Generation. In Proc. 8th International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS), volume 2280 of
Lecture Notes in Computer Science, pages 327–341, Grenoble, France, April 2002.
Springer.

[37] J. C. Huang. An Approach to Program Testing. ACM Computing Surveys, 7(3), 1975.

[38] S. Khurshid, C. Pasareanu, and W. Visser. Generalized Symbolic Execution for Model
Checking and Testing. In Proceedings of TACAS’03: Tools and Algorithms for the
Construction and Analysis of Systems, volume 2619 of LNCS, Warsaw, Poland, April
2003.

[39] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time
Assurance Tool for Java. Formal Methods in System Design, 24(2):129–156, March
2004.

[40] J. C. King. Symbolic Execution and Program Testing. Communications of the ACM,
19(7):385–394, 1976.

[41] B. Korel. Automated Software Test Data Generation. IEEE Transaction on Software
Engineering, 16(8):870–879, August 1990.

[42] B. Korel. Automated Test Data Generation for Programs with Procedures. In Proc.
International Symposium on Software Testing and Analysis (ISSTA), pages 209–215,
San Diego, CA, 1996.

[43] D. Kortenkamp, R. Simmons, T. Milam, and J. Fernandez. A Suite of Tools for
Debugging Distributed Autonomous Systems. Formal Methods in System Design,
24(2):157–188, March 2004.

[44] K. Jelling Kristoffersen, C. Pedersen, and H. R. Andersen. Runtime Verification of
Timed LTL using Disjunctive Normalized Equation Systems. In Proc. of RV’03: Third
International Workshop on Runtime Verification, volume 89(2) of Electronic Notes in
Theoretical Computer Science, Boulder, USA, 2003. Elsevier Science.

[45] D. Marinov. Testing Using a Solver for Imperative Constraints. PhD thesis, Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
2004. (to appear).

[46] D. Marinov and S. Khurshid. TestEra: A Novel Framework for Automated Testing of
Java Programs. In Proc. 16th IEEE International Conference on Automated Software
Engineering (ASE), pages 22–34, San Diego, CA, November 2001.

[47] N. Markey and P. Schnoebelen. Model Checking a Path (Preliminary Report). In Proc.
of CONCUR’03: International Conference on Concurrency Theory, volume 2761 of
Lecture Notes in Computer Science, pages 251–265, Marseille, France, August 2003.
Springer.

30

[48] P. M. Maurer. Generating Test Data with Enhanced Context-Free Grammars. IEEE
Software, 7(4):50–55, July 1990.

[49] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming. O’Reilly, 1998.

[50] T. O’Malley, D. Richardson, and L. Dillon. Efficient Specification-Based Oracles for
Critical Systems. In Proc. of the California Software Symposium, 1996.

[51] Parasoft. http://www.parasoft.com.

[52] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–77, 1977.

[53] W. Pugh. A Practical Algorithm for Exact Array Dependence Analysis.
Communications of the ACM, 35(8):102 – 114, August 1992.

[54] Purify: Fast Detection of Memory Leaks and Access Errors. January 1992.

[55] C. V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen. On the Automated Generation of
Program Test Data. IEEE Transactions on Software Engineering, 2(4):293–300, 1976.

[56] D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test Oracles
for Reactive Systems. In Proc. of ICSE’92: International Conference on Software
Engineering, pages 105–118, Melbourne, Australia, 1992.

[57] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic
Data Race Detector for Multithreaded Programs. ACM Transactions on Computer
Systems, 15(4):391–411, November 1997.

[58] A. Sen and V. K. Garg. Partial Order Trace Analyzer (POTA) for Distributed Programs.
In Proc. of RV’03: the Third International Workshop on Runtime Verification, volume
89(2) of Electronic Notes in Theoretical Computer Science, Boulder, USA, 2003.
Elsevier Science.

[59] K. Sen and G. Roşu. Generating Optimal Monitors for Extended Regular Expressions.
In Proc. of RV’03: Third International Workshop on Runtime Verification, volume
89(2) of Electronic Notes in Theoretical Computer Science, Boulder, USA, 2003.
Elsevier Science.

[60] K. Sen, G. Roşu, and G. Agha. Generating Optimal Linear Temporal Logic Monitors
by Coinduction. In V.A. Saraswat, editor, Proceedings of 8th Asian Computing Science
Conference (ASIAN’03), volume 2896 of Lecture Notes in Computer Science, pages
260–275, December 2003.

[61] K. Sen, G. Roşu, and G. Agha. Runtime Safety Analysis of Multithreaded Programs.
In Proc. of ESEC/FSE’03: European Software Engineering Conference and ACM
SIGSOFT International Symposium on the Foundations of Software Engineering,
pages 337 – 346. ACM, Helsinki, Finland, September 2003.

[62] E. G. Sirer and B. N. Bershad. Using Production Grammars in Software Testing. In
Proc. 2nd conference on Domain-specific languages, pages 1–13, 1999.

[63] K. Stobie. Advanced Modeling, Model Based Test Generation, and Abstract state
machine Language AsmL. http://www.sasqag.org/pastmeetings/asml.ppt, 2003.

31

[64] P. Thati and G. Roşu. Monitoring Algorithms for Metric Temporal Logic. In Proc.
of RV’04: Fourth International Workshop on Runtime Verification, Electronic Notes in
Theoretical Computer Science, Barcelona, Spain, 2004. Elsevier Science. To appear.

[65] N. Tracey, J. Clark, and K. Mander. The Way Forward for Unifying Dynamic Test-
Case Generation: The Optimisation-Based Approach. In International Workshop on
Dependable Computing and Its Applications (DCIA), pages 169–180. IFIP, January
1998.

[66] T-VEC. http://www.t-vec.com.

[67] W. Visser, K. Havelund, G. Brat, S.-J. Park, and F. Lerda. Model Checking Programs.
Automated Software Engineering Journal, 10(2):203–232, April 2003.

32

